Abstract

The genus Salmonella contains more than 2500 serovars. While most cause the self-limiting gastroenteritis, a few serovars can elicit typhoid fever, a severe systemic infection. S. enterica subsp. enterica serovar Typhimurium and S. Typhi are the representatives of the gastroenteritis and typhoid fever types of Salmonella. In this study, we adopted Stable Isotope Labeling with Amino acids in Cell culture (SILAC) technology to quantitatively compare the proteomes of the two serovars. We found several proteins with serovar-specific expression, which could be developed as new biomarkers for clinical serotype diagnosis. We found that flagella and chemotaxis genes were down-regulated in S. Typhi in comparison with S. Typhimurium. We attributed this observation to the fact that the smooth cellular structure of S. Typhi may better fit its systemic lifestyle. Instead of known virulence factors that were located within Salmonella Pathogenecity Islands, a number of core genes, which were involved in metabolism and transport of carbohydrates and amino acids, showed differential expression between the two serovars. Further studies on the roles of these differentially-expressed genes in the pathogenesis should be undertaken.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.