Abstract

Gulf War Illness (GWI) is a chronic multisymptom condition with a central nervous system (CNS) component, for which there is no treatment available. It is now believed that the combined exposure to Gulf War (GW) agents, including pyridostigmine bromide (PB) and pesticides, such as permethrin (PER), was a key contributor to the etiology of GWI. In this study, a proteomic approach was used to characterize the biomolecular disturbances that accompany neurobehavioral and neuropathological changes associated with combined exposure to PB and PER. Mice acutely exposed to PB and PER over 10 days showed an increase in anxiety-like behavior, psychomotor problems and delayed cognitive impairment compared to control mice that received vehicle only. Proteomic analysis showed changes in proteins associated with lipid metabolism and molecular transport in the brains of GW agent-exposed mice compared to controls. Proteins associated with the endocrine and immune systems were also altered, and dysfunction of these systems is a prominent feature of GWI. The presence of astrogliosis in the GW agent-exposed mice compared to control mice further suggests an immune system imbalance, as is observed in GWI. These studies provide a broad perspective of the molecular disturbances driving the late pathology of this complex illness. Evaluation of the potential role of these biological functions in GWI will be useful in identifying molecular pathways that can be targeted for the development of novel therapeutics against GWI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call