Abstract
LMNA-related congenital muscular dystrophy (L-CMD) is caused by mutations in the LMNA gene, encoding lamin A/C. To further understand the molecular mechanisms of L-CMD, proteomic profiling using DIA mass spectrometry was conducted on immortalized myoblasts and myotubes from controls and L-CMD donors each harbouring a different LMNA mutation (R249W, del.32 K and L380S). Compared to controls, 124 and 228 differentially abundant proteins were detected in L-CMD myoblasts and myotubes, respectively, and were associated with enriched canonical pathways including synaptogenesis and necroptosis in myoblasts, and Huntington's disease and insulin secretion in myotubes. Abnormal nuclear morphology and reduced lamin A/C and emerin abundance was evident in all L-CMD cell lines compared to controls, while nucleoplasmic aggregation of lamin A/C was restricted to del.32 K cells, and mislocalization of emerin was restricted to R249W cells. Abnormal nuclear morphology indicates loss of nuclear lamina integrity as a common feature of L-CMD, likely rendering muscle cells vulnerable to mechanically induced stress, while differences between L-CMD cell lines in emerin and lamin A localization suggests that some molecular alterations in L-CMD are mutation specific. Nonetheless, identifying common proteomic alterations and molecular pathways across all three L-CMD lines has highlighted potential targets for the development of non-mutation specific therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.