Abstract

Many of nitric oxide (NO) actions are mediated through the coupling of a nitroso moiety to a reactive cysteine leading to the formation of a S-nitrosothiol (SNO), a process known as S-nitrosylation or S-nitrosation. In many cases this reversible post-translational modification is accompanied by altered protein function and aberrant S-nitrosylation of proteins, caused by altered production of NO and/or impaired SNO homeostasis, has been repeatedly reported in a variety of pathophysiological settings. A growing number of studies are directed to the identification and characterization of those proteins that undergo S-nitrosylation and the analysis of S-nitrosoproteomes under pathological conditions is beginning to be reported. The study of these S-nitrosoproteomes has been fueled by advances in proteomic technologies that are providing researchers with improved tools for exploring this post-translational modification. Here we review novel refinements and improvements to these methods, and some recent studies of the S-nitrosoproteome in disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.