Abstract

The aim of current investigation was to perform proteomics and physio-chemical studies to dissect the changes in contrasting varieties (S-22 and PKM-1) of Lycopersicon esculentum under low-temperature stress. Plant grown under variable low-temperature stress were analysed for their growth biomarkers, antioxidant enzyme activities, and other physiological parameters, which headed toward the determination of protein species responding to low-temperature and 24-epibrassinolide (EBL) concentrations. The plants grown under temperatures, 20/14, 12/7, and 10/3 °C recorded significantly lower growth biomarkers, SPAD chlorophyll, net photosynthetic rate and carbonic anhydrase activity in S-22 and PKM-1. Moreover, the combined effect of EBL and hydrogen peroxide (H2O2) significantly improved the parameters mentioned above and consecutively upgraded the different antioxidant enzymes (CAT and SOD) with higher accumulation of proline under stress and stress-free environments. Furthermore, proteomics study revealed that the maximum number of differentially expressed proteins were detected in S-22 (EBL + H2O2); while treatment with EBL + H2O2 + low temperature lost expression of 20 proteins. Overall, three proteins (O80577, Q9FJQ8, and Q9SKL2) took a substantial part in the biosynthesis of citrate cycle pathway and enhanced the growth and photosynthetic efficiency of tomato plants under low-temperature stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call