Abstract

Traumatic spinal cord injury (SCI) causes marked neuropathological changes in the spinal cord, resulting in limited functional recovery. Currently, there are no effective treatments, and the mechanisms underlying these neuropathological changes are not completely understood. In this study, two-dimensional gel electrophoresis coupled with mass spectrometry was used to investigate injury-related changes in the abundance (SYPRO Ruby stain) and phosphorylation (Pro-Q Diamond stain) of proteins from the soluble fraction of the lesion epicenter at 24 h following SCI. Over 1500 SYPRO Ruby-stained spots and 100 Pro-Q Diamond-stained spots were examined. We identified 26 unique proteins within 38 gel spots that differentially changed in abundance, phosphorylation, or both in response to SCI. Protein redundancies among the gel spots were likely due to differences in proteolysis, post-translational modifications, and the existence of isoforms. The proteins affected were blood-related proteins, heat-shock proteins, glycolytic enzymes, antioxidants, and proteins that function in cell structure, cell signaling, DNA damage, and protein degradation. These protein changes post injury may suggest additional avenues of investigation into the underlying molecular mechanisms responsible for the pathophysiological consequences of SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.