Abstract

The study aimed to assess differences in proteomic and metabolite profiles in ageing (1, 2, 4, and 6 days at 4 °C) beef exudates and determine their relationship with beef muscle iron metabolism and oxidation. Proteomic and metabolomic analyses identified 877 metabolites and 1957 proteins. The joint analysis identified 24 differential metabolites (DMs) and 56 differentially expressed proteins (DEPs) involved in 15 shared pathways. Ferroptosis was identified as the only iron metabolic pathway, and 4 DMs (l-glutamic acid, arachidonic acid, glutathione and gamma-glutamylcysteine) and 5 DEPs (ferritin, phospholipid hydroperoxide glutathione peroxidase, heme oxygenase 1, major prion protein, and acyl-CoA synthetase long chain family member 4) were involved in iron metabolism by regulating heme and ferritin degradation, Fe2+ and Fe3+ conversion, arachidonic acid oxidation and inactivation of glutathione peroxidase (GPX) 4, leading to increased levels of free iron, ROS, protein and lipid oxidation (P < 0.05). Overall, abnormal iron metabolism during ageing induced oxidative stress in muscle tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.