Abstract

The NaGSL1 gene has been proposed to encode the callose synthase (CalS) enzyme from Nicotiana alata pollen tubes based on its similarity to fungal 1,3-beta-glucan synthases and its high expression in pollen and pollen tubes. We have used a biochemical approach to link the NaGSL1 protein with CalS enzymic activity. The CalS enzyme from N. alata pollen tubes was enriched over 100-fold using membrane fractionation and product entrapment. A 220 kDa polypeptide, the correct molecular weight to be NaGSL1, was specifically detected by anti-GSL antibodies, was specifically enriched with CalS activity, and was the most abundant polypeptide in the CalS-enriched fraction. This polypeptide was positively identified as NaGSL1 using both MALDI-TOF MS and LC-ESI-MS/MS analysis of tryptic peptides. Other low-abundance polypeptides in the CalS-enriched fractions were identified by MALDI-TOF MS as deriving from a 103 kDa plasma membrane H+-ATPase and a 60 kDa beta-subunit of mitochondrial ATPase, both of which were deduced to be contaminants in the product-entrapped material. These analyses thus suggest that NaGSL1 is required for CalS activity, although other smaller (<30 kDa) or low-abundance proteins could also be involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.