Abstract
Cell migration is essential for embryonic development and tissue formation in all animals. cacn-1 is a conserved gene of unknown molecular function identified in a genome-wide screen for genes that regulate distal tip cell migration in the nematode worm Caenorhabditis elegans. In this study we take a proteomics approach to understand CACN-1 function. To isolate CACN-1−interacting proteins, we used an in vivo tandem-affinity purification strategy. Tandem-affinity purification−tagged CACN-1 complexes were isolated from C. elegans lysate, analyzed by mass spectrometry, and characterized bioinformatically. Results suggest significant interaction of CACN-1 with the C. elegans spliceosome. All of the identified interactors were screened for distal tip cell migration phenotypes using RNAi. Depletion of many of these factors led to distal tip cell migration defects, particularly a failure to stop migrating, a phenotype commonly seen in cacn-1 deficient animals. The results of this screen identify eight novel regulators of cell migration and suggest CACN-1 may participate in a protein network dedicated to high-fidelity gonad development. The composition of proteins comprising the CACN-1 network suggests that this critical developmental module may exert its influence through alternative splicing or other post-transcriptional gene regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.