Abstract

Early pregnancy loss is the most common complication of human reproduction. Given the complexities of early development, it is likely that many mechanisms are involved. Knowledge of differences in protein expression in parallel profiling is essential to understand the comprehensive pathophysiological mechanism underlying early pregnancy loss. To identify proteins with different expression profiles related to early pregnancy loss, we applied a proteomic approach and performed two-dimensional gel electrophoresis (2-DE) on six placental villous tissues from patients with early pregnancy loss and six from normal pregnant women, followed by comparison of the silver-stained 2-DE profiles. It was found that 13 proteins were downregulated and 5 proteins were upregulated significantly (P < 0.05) in early pregnancy loss as determined by spot volume. Among them, 10 downregulated and 2 upregulated spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anomalies of these proteins, including three principal antioxidant enzymes (copper/zinc-superoxide dismutase, peroxiredoxin 3, and thioredoxin-like 1 protein), S100 calcium binding protein, galectin-1, chorionic somatomammotropin hormone 1, transthyretin, fas inhibitory molecule, eukaryotic translation elongation factor, RNA-binding protein, ubiquitin-conjugating enzyme E2N, and proteasome beta-subunit, indicate widespread failure in cell regulations and processes such as antioxidative defense, differentiation, cell proliferation, metabolism, apoptosis, transcription, and proteolysis in early pregnancy loss. This study has identified several proteins that are associated with placentation and early development, shedding a new insight into the proteins that may be potentially involved in the pathophysiological mechanisms underlying early pregnancy loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call