Abstract
Bacterial colonisation and biofilm formation on the surface of urinary catheters is a common cause of nosocomial infection, and as such is a major impediment to their long-term use. Understanding the mechanisms of biofilm formation on urinary catheters is critical to their control and will aid the future development of materials used in their manufacture. In this report we have used proteomic analysis coupled with immunoassays to show that the major outer membrane protein (OmpA) of Escherichia coli is overexpressed during biofilm formation. A series of synthetic hydrogels being developed for potential use as catheter coatings were used as the substrata and OmpA expression was increased in biofilms on all these surfaces, as well as being a feature of both a laboratory and a clinical strain of E. coli. Up-regulation of OmpA may, therefore, be a common feature of E. coli biofilms. These findings present OmpA as a potential target for biofilm inhibition and may contribute to the rational design of biofilm inhibiting hydrogel coatings for urinary catheters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.