Abstract

Xanthan, a highly stable polysaccharide which is not easily degraded by most microorganisms, contains a cellulosic backbone with trisaccharide side chains composed of mannosyl-glucuronyl-mannose attached α-1,3 to alternating glucosyl residues. Different digestion strategies were first applied to demonstrate the complexity about the proteomes of Microbacterium sp. XT11 in xanthan medium and glucose medium. Significantly up-regulated proteins induced by xanthan were screened out by the label-free quantitation of the proteomes of Microbacterium sp. XT11 in xanthan medium and glucose medium. Consequently, 2746 and 2878 proteins were identified in proteomes of Microbacterium sp. XT11 in xanthan medium and glucose medium individually, which represent 80.6 and 84.4% of total protein dataset predicted to be expressed by the gene. In the list of 430 induced proteins containing the proteins specifically expressed or up-regulated in xanthan medium, 19 proteins involved in carbohydrate-active enzymes database and 38 proteins annotated with transporter activity were critical in the degrading pathway of xanthan. Four CAZymes (GH3, GH38, GH9, and PL8) and one ABC transporter (LX1-1GL001097) were verified with quantitative real-time polymerase chain reaction. Four CAZymes (GH3, GH38, GH9, and PL8) were further verified with the enzyme assay. This study suggests a xanthan-degrading pathway in Microbacterium sp. XT11, and other potential xanthan degradation-related proteins still need further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call