Abstract

Trichinella spiralis mainly dwells in the muscle tissue of its host and is the main causative agent of trichinellosis in humans. Nitric oxide (NO), an important intracellular signaling molecule that may restrict pathogen growth in infected hosts, has been known for its anti-pathogenic activity, including resistance to T. spiralis. Herein, we applied label-free analysis to investigate the effect of sodium nitroprusside (SNP, a NO donor compound) on the proteome of T. spiralis muscle larvae (ML), followed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cluster analyses. Of the 1,476 proteins detected in the ML, 121 proteins showed differential expression, including 50 significantly upregulated and 71 downregulated proteins. The functions of the 108 annotated proteins were primarily related to signal transduction, transcription/translation, material metabolism, protein synthesis/assembly/degradation, and stress/defense/antioxidation. Quantitative real-time polymerase chain reaction (qRT-PCR) assay verified that FRMD5 and CUT-1 gene expression levels were significantly increased, while COX2 gene expression level was significantly decreased. GO annotation and KEGG pathway analyses showed that the majority of differentially expressed proteins were mainly involved in the molecular function of the catalytic activity, biological process of the immune system process, metabolic process, cellular component organization, biological adhesion, and cellular component of the macromolecular complex. Our results demonstrate the first comprehensive protein expression profile of the ML in response to NO stress and provide novel references for understanding the potential mechanism underlying the effects of NO on trichinellosis.

Highlights

  • Trichinella spp. is the smallest, but clinically important, nematode parasite that is widespread and a main causative agent of trichinellosis [1,2]

  • Several different protein bands were identified from T. spiralis muscle larvae (ML) after Sodium nitroprusside (SNP) treatment as compared with the control group (Fig 1)

  • The unique peptide distribution of the identified proteins were shown in S2 Fig. A correlation analysis showed that the r value of Pearson’s correlation was 0.939, and a higher correlation was observed in the control and treatment groups (S3 Fig)

Read more

Summary

Introduction

Trichinella spp. is the smallest, but clinically important, nematode parasite that is widespread and a main causative agent of trichinellosis [1,2]. It is commonly observed in carnivorous mammals and omnivores, including pigs, rodents, and humans [3,4,5]. Trichinellosis has been reported in about 55 countries worldwide and is very common in developing countries [6,7]. Response of Trichinella spiralis muscle larvae to exogenous nitric oxide. Research in Education Institutes of Anhui Colleges and Universities (KJ2016A708, KJ2015B034by) and by the Key Projects of Science Research of Bengbu College (2017ZR01). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.