Abstract
Cucumber mosaic virus (CMV), a member of the Cucumovirus genus, is the causal agent of several plant diseases in a wide range of host species, causing important economic losses in agriculture. Because of the lack of natural resistance genes in most crops, different genetic engineering strategies have been adopted to obtain virus-resistant plants. In a previous study, we described the engineering of transgenic tomato plants expressing a single-chain variable fragment antibody (scFv G4) that are specifically protected from CMV infection. In this work, we characterized the leaf proteome expressed during compatible plant-virus interaction in wild type and transgenic tomato. Protein changes in both inoculated and apical leaves were revealed using two-dimensional gel electrophoresis (2-DE) coupled to differential in gel electrophoresis (DIGE) technology. A total of 2084 spots were detected, and 50 differentially expressed proteins were identified by nanoscale liquid chromatographic-electrospray ionization-ion trap-tandem mass spectrometry (nLC-ESI-IT-MS/MS). The majority of these proteins were related to photosynthesis (38%), primary metabolism (18%), and defense activity (14%) and demonstrated to be actively down regulated by CMV in infected leaves. Moreover, our analysis revealed that asymptomatic apical leaves of transgenic inoculated plants had no protein profile alteration as compared to control wild type uninfected plants demonstrating that virus infection is confined to the inoculated leaves and systemic spread is hindered by the CMV coat protein (CP)-specific scFv G4 molecules. Our work is the first comparative study on compatible plant-virus interactions between engineered immunoprotected and susceptible wild type tomato plants, contributing to the understanding of antibody-mediated disease resistance mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.