Abstract

Denervated but not innervated skeletal muscles secrete polypeptides that are involved in neuromuscular synapse formation. With the aim of identifying such components, metabolically labeled polypeptides in extracts from denervated and innervated muscles were submitted to two-dimensional gel electrophoresis, and the abundance of individual molecular species was compared. Consistent differences between the proteomic maps from the two sources of muscles were seen. Likewise, proteomic maps of polypeptides from organ culture media conditioned by chronically denervated muscles and by control muscles revealed consistent differences, but the abundance of material within individual spots from conditioned media was not sufficient for analysis by mass spectrometry. Since it was not possible to match the patterns from muscle extracts and from conditioned media, it has been established that extract of Sol8 muscle cells was a satisfactory source of material for analysis. From 1,200 spots identified on the proteomic map from Sol8 cells by image analysis, some 140 have been defined by mass spectrometric analysis. In order to identify the components that are shared by secreted molecules from denervated muscles and Sol8 cells, a mixture of extracts from the two sources was co-electrophoresed and a shared proteomic pattern was established by visualization of metabolically labeled spots from the conditioned medium and of silver stained spots from the Sol8 cells. More than 100 spots sharing x/y coordinate localization could be seen on the pattern. Of these, fourteen were among those identified by mass spectrometry. It is concluded that co-electrophoresis of radioactively labeled polypeptides from conditioned media with extracts from Sol8 cells can be used to mark in the proteome of Sol8 cells those polypeptides that are secreted at low abundance by adult muscles. Their higher abundance in Sol8 cells opens the possibility for further scrutiny of spots by mass spectrometry or by microsequencing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.