Abstract

BackgroundNitric oxide (NO) mediates its function through the direct modification of various cellular targets. S-nitrosylation is a post-translational modification of cysteine residues by NO that regulates protein function. Recently, an imbalance of S-nitrosylation has also been linked to neurodegeneration through the impairment of pro-survival proteins by S-nitrosylation.ResultsIn the present study, we used two-dimensional gel electrophoresis in conjunction with the modified biotin switch assay for protein S-nitrosothiols using resin-assisted capture (SNO-RAC) to identify proteins that are S-nitrosylated more intensively in neuroblastoma cells treated with a mitochondrial complex I inhibitor, 1-methyl-4-phenylpyridinium (MPP+). We identified 14 proteins for which S-nitrosylation was upregulated and seven proteins for which it was downregulated in MPP+-treated neuroblastoma cells. Immunoblot analysis following SNO-RAC confirmed a large increase in the S-nitrosylation of esterase D (ESD), serine-threonine kinase receptor-associated protein (STRAP) and T-complex protein 1 subunit γ (TCP-1 γ) in MPP+-treated neuroblastoma cells, whereas S-nitrosylation of thioredoxin domain-containing protein 5 precursor (ERp46) was decreased.ConclusionsThese results suggest that S-nitrosylation resulting from mitochondrial dysfunction can compromise neuronal survival through altering multiple signal transduction pathways and might be a potential therapeutic target for neurodegenerative diseases.

Highlights

  • Nitric oxide (NO) mediates its function through the direct modification of various cellular targets

  • We evaluated the S-nitrosylation of several proteins that were identified by immunoblotting after separation by the modified biotin switch assay for protein S-nitrosothiols using resin-assisted capture (SNORAC) [11]

  • Purification of S-nitrosylated proteins by S-nitrosothiols using resin-assisted capture (SNO-RAC) S-nitrosylation plays important roles in modifying the function of proteins under physiological and pathophysiological conditions [4], and accurate quantification of the extent of S-nitrosylation at a particular cysteine residue is essential to understand its influence on signal transduction

Read more

Summary

Results

We used two-dimensional gel electrophoresis in conjunction with the modified biotin switch assay for protein S-nitrosothiols using resin-assisted capture (SNO-RAC) to identify proteins that are S-nitrosylated more intensively in neuroblastoma cells treated with a mitochondrial complex I inhibitor, 1-methyl-4-phenylpyridinium (MPP+). We identified 14 proteins for which S-nitrosylation was upregulated and seven proteins for which it was downregulated in MPP+-treated neuroblastoma cells. Immunoblot analysis following SNO-RAC confirmed a large increase in the S-nitrosylation of esterase D (ESD), serine-threonine kinase receptor-associated protein (STRAP) and T-complex protein 1 subunit γ (TCP-1 γ) in MPP+-treated neuroblastoma cells, whereas S-nitrosylation of thioredoxin domain-containing protein 5 precursor (ERp46) was decreased

Background
Results and discussion
Materials and methods
15. Kao SY
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call