Abstract

Oxidative injury is believed to play an important role in the pathogenesis of lung diseases such as emphysema and lung cancer. We examined the effects of a classic reactive oxygen species, H 2O 2, on the hydrogen peroxide response proteins (HPRP) in human pneumocytes using comparative two-dimensional gel electrophoresis (2DE) and peptide mass fingerprinting. Four HPRP-associated proteins (DJ-1, peroxiredoxins [Prxs] I and IV and glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) were changed upon exposure to H 2O 2 (1 mM for 24 h). H 2O 2 exposure increased the acid (oxidized) form and decreased the basic (reduced) form of DJ-1 (pI 5.8 and 6.2, respectively), Prx I and IV and GAPDH. Mechanistic studies on DJ-1 indicated that the slow recovery of the reduced form was blocked by cyclohexamide, suggesting that the recovery was due to new protein synthesis. Total DJ-1 expression was decreased by increasing concentrations of H 2O 2. In contrast, a more complex mix of oxidants in the form of cigarette smoke extract (CSE) dose-dependently increased DJ-1 expression and produced a novel DJ-1 isoform (p I 5.6). Moreover, DJ-1 expression was higher in the lungs of chronic cigarette smokers compared with nonsmokers, a result which resembled the effects of CSE in cultured cells. These data indicate that in human pneumocytes, DJ-1 functions as an antioxidant but that no enzymatic system converts the oxidized to the reduced form. Up-regulation of DJ-1 by cigarette smoke may be a compensatory mechanism that protects the lung from oxidative stress-related injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.