Abstract
Neural stem cells continuously generate new neurons in the ventricular–subventricular zone (V–SVZ) of the postnatal and adult mammalian brain. New neurons born in the rodent V–SVZ migrate toward the olfactory bulb (OB), where they differentiate into interneurons. To reveal novel intracellular molecular mechanisms that control postnatal neuronal migration, we performed a global proteomic search for proteins interacting with Girdin, an essential protein for postnatal neuronal migration. Using GST pull-down and LC–MS/MS shotgun analysis, we identified cytoskeletal proteins, cytoskeleton-binding proteins, and signal-transduction proteins as possible participants in neuronal migration. Our results suggest that Girdin and Girdin-interacting proteins control neuronal migration by regulating actin and/or microtubule dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.