Abstract

Protein isolate from Parkia biglobosa seeds is believed to possess excellent anti-diabetic properties. The purpose of this study was to identify differentially expressed proteins in liver of streptozotocin-induced diabetic rats treated with Parkia biglobosa seeds protein isolate (PBPi). In this study, total proteins extracted from rat liver were separated on one-dimensional SDS polyacrylamide gel (1D SDS-PAGE) and stained with Coomassie brilliant blue (CBB) to visualize protein bands. We observed that protein bands in the region of 10–15 kDa were altered by the different treatments; these bands were selected and excised for in-gel digestion and peptide extraction followed by nLC-MS, MALDI-TOF MS, and LIFT MS/MS. A database search with the Mascot algorithm positively identified four differentially expressed proteins. These proteins are known to be responsible for diverse biological functions within various organs and tissues. The present result gives insight and understanding into possible molecular mechanisms by which streptozotocin causes various alterations in proteins found in the liver of diabetic rats and the possible modulatory role of PBPi in the management of streptozotocin-induced diabetes.

Highlights

  • Multiple-organ failure has emerged as one of the most significant cause of death associated with diabetes mellitus in both developing and developed countries of the world [1]

  • The proteins were well separated and based on the appearance on the gel; the protein bands in the region of 10–15 kDa appeared to be altered by the different treatments; these bands were selected and cut for in-gel digestion and peptide extraction followed by nLC-mass spectrometry (MS), MALDI-TOF MS, and LIFT MS/MS in order to identify the proteins

  • The peptide masses of each protein sample obtained by MALDI-TOF MS and LIFT MS/MS were submitted to MASCOT

Read more

Summary

Introduction

Multiple-organ failure has emerged as one of the most significant cause of death associated with diabetes mellitus in both developing and developed countries of the world [1]. Diabetes mellitus is an endocrine metabolic disorder characterized by abnormal increase in the blood sugar level (hyperglycaemia) as well as alteration in lipids, carbohydrates, and protein metabolism, which is linked to low level of insulin production or insensitivity of target organs to insulin [5,6]. Sustained hyperglycemia can lead to disturbances in the cell structure and functions of organs [7]. It triggers the activation of polyol pathway, enhances sorbitol and fructose accumulation, Molecules 2018, 23, 156; doi:10.3390/molecules23020156 www.mdpi.com/journal/molecules

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.