Abstract

AbstractSoybean rust caused by Phakopsora pachyrhizi is a destructive foliar disease in nearly all soybean‐producing countries. Understanding the host responses at the molecular level is certainly essential for effective control of the disease. To identify proteins involved in the resistance to soybean rust, differential proteomic analysis was conducted in soybean leaves of a resistant genotype after P. pachyrhizi infection. A total of 41 protein spots exhibiting a fold change >1.5 between the non‐inoculated and P. pachyrhizi‐inoculated soybean leaves at 12 and 24 h postinoculation (hpi) were unambiguously identified and functionally grouped into seven categories. Twenty proteins were up‐regulated and four proteins were down‐regulated at 12 hpi, whereas 18 proteins were up‐regulated and eight proteins were down‐regulated at 24 hpi. Generally, proteins involved in photosynthesis were down‐regulated, whereas proteins associated with disease and defense response, protein folding and assembly, carbohydrate metabolism and energy production were up‐regulated. Results are discussed in terms of the functional implications of the proteins identified, with special emphasis on their putative roles in defense. Abundance changes of these proteins, together with their putative functions reveal a comprehensive picture of the host response in rust‐resistant soybean leaves and provide a useful platform for better understanding of the molecular basis of soybean rust resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.