Abstract

In this study, differentially expressed proteins in A549 cells (human lung adenocarcinoma epithelial cell line) infected with H9N2 avian influenza virus (AIV) were investigated by two-dimensional electrophoresis (2-DE). Sixteen different spots between the groups (ratio > 2, p < 0.05) were identified with mass spectrometry identification. Proteins located in the downstream of the NF-κB and IFN transcription factor pathways were identified, e.g., ISG15. Actin and keratin were also identified, suggesting that the cytoskeleton may plays an important role in the AIV infection of mammalian cells. These findings could provide insights into the interaction between host and influenza viruses and might provide valuable information for clarifying the pathogenesis of viral infections as well.

Highlights

  • The avian influenza virus (AIV) H9N2 subtype has been circulating in domestic poultry in mainland China since 1994 (Tang et al, 1998)

  • In order to examine the difference of expressed proteins of the H9N2 virus in A549 cells effectively, specific pathogen free (SPF) embryonic chicken eggs (9-day-old) were used to amplify H9N2 virus - A/Chicken/Shandong/ch/2011(CK/SD/ch), which provided by the Center for Animal Disease Control Engineering of Shandong Province

  • The amplified H9N2 virus was inoculated onto monolayers of the A549 cells line (1.6 × 106 cells/mL), a multiplicity of infection (MOI) of 1 was used in this study

Read more

Summary

INTRODUCTION

The avian influenza virus (AIV) H9N2 subtype has been circulating in domestic poultry in mainland China since 1994 (Tang et al, 1998). There is a growing need to investigate host cells infected with the H9N2 virus to elucidate potential target proteins for viral infection and adaptation studies. Alterations of cellular proteins in human airway epithelial cell. The A549 cell line, which originated from human airway epithelial cells, was found susceptible to a strain of H9N2 influenza viruses that we screened (unpublished data). To better understand the molecular and cellular basis of H9N2 infection and adaptation in human airway cells, we used proteomic approaches to study the patterns of cellular proteins with variable expression upon H9N2 virus infection. Our findings may assist with the investigations into the pathogenesis and adaptation of H9N2 virus in airway epithelial cells, and with the search for potential protein targets for further studies

MATERIALS AND METHODS
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call