Abstract

We aimed to understand the molecular-level changes occurring in the photosynthetic metabolic network in mutant chloro-plasts. We performed comparative liquid chromatography-mass spectrometry protein profiling of wild-type (WT) and chlorophyll-deficient melon (Cucumis melo L.) mutants. We identified 390 differentially expressed proteins and 81 shared proteins varied significantly in abundance, of which 76 were upregulated and 5 were downregulated. Differentially expressed proteins were involved in the following biological processes: binding, catalytic, structural, transporter, and antioxidant activities. The mutant had 6.08-fold higher expression of glutamate-1-semialdehyde 2,1-aminomutase (GSAM), an enzyme that synthesizes the chlorophyll precursor, 5-aminolevulinic acid, and a 5.02-fold higher expression of pyridoxal biosynthesis protein, a GSAM coenzyme. An RNA recognition motif-containing protein (RRM) decreased in expression by 5.22-fold. This suggests that GSAM and RRM are particularly relevant to chlorophyll deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.