Abstract

A method for detecting carbonylated proteins in two-dimensional electrophoresis (2-DE) was developed using biotinylation and avidin-fluorescein isothiocyanate (FITC) affinity staining. The method was used to examine oxidatively modified proteins associated with oxidative stress. Carbonyl formation in proteins was first examined in a model system by subjecting bovine serum albumin (BSA) and ribonuclease A (RNase A) to metal-catalyzed oxidation (MCO). Carbonyl group formation was found to occur at multiple sites along with a small amount of polypeptide chain cleavage. In vivo studies were conducted in yeast cell cultures using 5 mM hydrogen peroxide to induce oxidative stress. Biotinylation of yeast protein was accomplished during extraction at 4 degrees C in a lysis buffer containing 5 mM biotin-hydrazide. Biotin-hydrazide forms a Schiff base with a carbonyl group on an oxidized protein that is subsequently reduced before electrophoresis. Proteins were separated by either 2-DE or sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Biotinylated species were detected using avidin-FITC affinity staining. Detection sensitivity with biotinylated proteins was five times higher than achieved by silver staining. The limit of detection with avidin-FITC staining approached 0.64 pmol of protein-associated carbonyls. Twenty carbonylated proteins were identified in the proteome of yeast following oxidative stress with hydrogen peroxide. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis of tryptic peptides was used to identify peptides extracted from gels. Aconitase, heat shock protein SSA1 and SSC1, pyruvate decarboxylase isozyme 1, pyruvate kinase 1, enolase 1 and 2, phosphoglycerate kinase, fructose-bisphosphate aldorase, and glyceraldehyde-3-phosphate dehydrogenase were among the major targets of oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call