Abstract

Objective We aimed to explore the treatment effect and therapeutic mechanisms of baicalin in Alzheimer’s disease (AD). Methods The AD rat model was established by intracerebroventricular injection of Aβ1-40, with rats in the baicalin group receiving baicalin intraventricular injections. Morris Water Maze and Hematoxylin-eosin (H&E) Staining were employed to detect the successful model construction and baicalin treatment effect. The proteins extracted from the hippocampus were subjected to proteomics analysis. Bioinformatics technology was employed for differential protein screening, functional classification, and enrichment. Western Blot was employed to validate the expressions of differentially expressed proteins (DEPs) and the protein modification alternations. Results Water maze test confirmed the successful AD model construction and baicalin can improve learning and memory abilities. A total of 26 DEPs associated with 28 Gene Ontology (GO) functions were identified in the model and 32 DEPs were obtained between the baicalin group and the model. Bioinformatics analysis demonstrated that AD occurrence resulted in neuronal dysfunction and was associated with immune responses. The baicalin therapeutic effect on AD may be associated with metabolic processes, vitamin response, angiogenesis regulation, and fatty acid response. Immunoglobulin heavy constant mu (Ighm) and Immunoglobulin G2a (IgG2a) exhibited significant increases in AD and baicalin attenuated their expressions, while Fatty acid desaturase 1 (Fads1) exhibited a significantly diminished expression and baicalin could reverse the trend. Succinylation detection exhibited the differentially expressed at 35 kD between the model and baicalin group. Conclusion Baicalin intervention may ameliorate cognitive impairment in AD rats by modulating the expressions of proteins and the succinylation modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.