Abstract

The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.

Highlights

  • New secondary metabolites produced by fungi hold a great potential in application for human use [1, 2]

  • Growth curves of both strains were obtained in triplicates and showed differences in the growth behaviour of the wild type (WT) strain LF580 and the mutant strain LF580-M26 (Fig 1A)

  • These differences led to growth rates of 0.0715 g biomass L-1 h-1 and 0.0426 g biomass L-1 h-1 (based on biomass: μX = dX-1) for the mutant strain LF580-M26 and the WT strain, respectively

Read more

Summary

Introduction

New secondary metabolites produced by fungi hold a great potential in application for human use [1, 2]. The two cyclodepsipeptides scopularides A and B are produced by an ascomycete, isolated from the inner tissue of the marine sponge Tethya aurantium [3]. Proteomic Analysis of a Marine M. brevicaulis Strain and Its UV-Mutant

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.