Abstract

BackgroundThe degree of adipose tissue development at birth may influence neonatal survival and subsequent health outcomes. Despite their lower birth weights, piglets from Meishan sows (a fat breed with excellent maternal ability) have a higher survival rate than piglets from Large White sows (a lean breed). To identify the main pathways involved in subcutaneous adipose tissue maturation during the last month of gestation, we compared the proteome and the expression levels of some genes at d 90 and d 110 of gestation in purebred and crossbred Large White or Meishan fetuses gestated by sows of either breed.ResultsA total of 52 proteins in fetal subcutaneous adipose tissue were identified as differentially expressed over the course of gestation. Many proteins involved in energy metabolism were more abundant, whereas some proteins participating in cytoskeleton organization were reduced in abundance on d 110 compared with d 90. Irrespective of age, 24 proteins differed in abundance between fetal genotypes, and an interaction effect between fetal age and genotype was observed for 13 proteins. The abundance levels of proteins known to be responsive to nutrient levels such as aldolase and fatty acid binding proteins, as well as the expression levels of FASN, a key lipogenic enzyme, and MLXIPL, a pivotal transcriptional mediator of glucose-related stimulation of lipogenic genes, were elevated in the adipose tissue of pure and crossbred fetuses from Meishan sows. These data suggested that the adipose tissue of these fetuses had superior metabolic functionality, whatever their paternal genes. Conversely, proteins participating in redox homeostasis and apoptotic cell clearance had a lower abundance in Meishan than in Large White fetuses. Time-course differences in adipose tissue protein abundance were revealed between fetal genotypes for a few secreted proteins participating in responses to organic substances, such as alpha-2-HS-glycoprotein, transferrin and albumin.ConclusionsThese results underline the importance of not only fetal age but also maternal intrauterine environment in the regulation of several proteins in subcutaneous adipose tissue. These proteins may be used to estimate the maturity grade of piglet neonates.

Highlights

  • The degree of adipose tissue development at birth may influence neonatal survival and subsequent health outcomes

  • The triglycerides content of the adipose tissue was similar in F1_LW and F1_MeiS fetuses at d 90, whereas it was higher in crossbred F1 fetuses having MeiS paternal genes (F1_LW) than in F1 fetuses having Large White (LW) paternal genes at d 110

  • A powerful experimental design to test for changes in adipose tissue proteins during gestation A total of 1,944 to 2,233 spots were detected on the 2D gels, and 75% were successfully matched across the different gels

Read more

Summary

Introduction

The degree of adipose tissue development at birth may influence neonatal survival and subsequent health outcomes. Despite their lower birth weights, piglets from Meishan sows (a fat breed with excellent maternal ability) have a higher survival rate than piglets from Large White sows (a lean breed). Piglets with higher breeding values for birth-to-weaning survival exhibited a greater percentage of body fat at full term [6]. Taken together, these data indicated that fetal development of adipose tissue should be considered in predicting piglet survival. Fetal development of adipose tissue could be important in predetermining postnatal growth of adipose tissue and predisposing animals to metabolic disorders in later life [14]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call