Abstract
Ethanol-soluble proteins, including prolamins, are one of the most important seed proteins in rice (Oryza sativa L.). However, little is known about the proteomic profile of ethanol-soluble protein fraction extracted from rice grain. In this work, the differential profile of ethanol-soluble proteins extracted by 2-chloroethanol and ethanol has been documented. Proteome analysis utilizing LC-MS/MS identified a total of 64 unique proteins in the 2-chloroethanol extract of rice seeds. The majority of these proteins had low molecular weight ranging from 10 to 25 kD and isoelectric point (pI) in mid-acidic (pH 5–pH 7) and mid-basic (pH 7–pH 9) ranges. Database searches combined with transmembrane domain (TMD) analysis revealed that >70% of identified proteins were hydrophobic, i.e., had at least one TMD. Gene ontology classification and enrichment analysis showed that the identified proteins were involved in13 types of biological processes, 5 types of cell components, and 17 types of molecular functions. These results were significant based on the hyper p-value of <0.05. The most frequent categories of biological processes, cell components, and molecular functions were, respectively, type I hypersensitivity, extracellular space and extracellular region, and serine-type endopeptidase inhibitor activity. Interestingly, in addition to seed storage proteins such as prolamins and glutelins, certain allergen proteins, protease inhibitors, and lipid transfer proteins were identified in the extracts. Together, the collected data provide novel insights into the protein profile of 2-chloroethanol extract of rice seeds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.