Abstract

Background/Objectives. Damage of the gastrointestinal mucosa is a major side effect of the anticancer drug 5-fluorouracil (5-FU). Insight into the molecular pathogenesis of 5-FU-induced gut mucositis is expected to justify the strategies of prophylaxis. Methods. We analyzed intestinal specimens obtained from Balb/c mice treated with 70 mg/kg 5-FU daily for up to 6 days. Results. Manifestations of mucositis in the ileum and the colon included diarrhea, weight loss, and morphological lesions. The proteomic analysis revealed dozens of differentially expressed proteins governed by a set of master regulator proteins that regulated downstream pathways culminating in the complexes of specific transcription factors. Among the most important mechanisms of 5-FU-induced gut damage predicted by bioinformatics tools was stimulation of insulin-like growth factor 1 concomitant with inhibition of insulin receptor substrate 1, suggesting an involvement of the insulin pathway. Furthermore, the levels of 14-3-3γ protein and epinephrin B2 tyrosine kinase were interpreted as key inhibitory effects of 5-FU. These changes were detectable in the ileum as well as in the colon, pointing to the commonality of 5-FU responses across the gut. Conclusion. These results demonstrated a hierarchical network of gut injury mechanisms differentially regulated in the course of the emergence of 5-FU-induced mucositis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.