Abstract

In the present study, we performed a differential proteomic analysis using 2-DE combined with MS to clarify the molecular mechanism for the suppressive effect of chitosan oligosaccharides (CO) during differentiation of adipocyte 3T3-L1. Cell differentiation was significantly inhibited by CO at the concentration of 4 mg/mL. Protein mapping of adipocyte homogenates by 2-DE revealed that numerous protein spots were differentially altered in response to CO treatment. Out of 50 identified proteins showing significant alterations, six were up-regulated and 44 were down-regulated by CO treatment in comparison to control mature adipocytes. Among them, most of the proteins are associated with lipid metabolism, cytoskeleton, and redox regulation, in which the levels of farnesyl diphosphate synthetase (FDS), dedicator of cytokinesis 9 (DOCK9), and chloride intracellular channel 1 (CLIC1) were significantly reduced (>two-fold) with CO treatment. These results have not previously been examined in the context of adipogenesis, and thus can be used as novel biomarkers. Taken together with immunoblot analysis, it was concluded that the inhibitory effect of CO on adipocyte differentiation was mediated by C/EBPalpha and PPARgamma pathway through significant downregulations of important adipogenic molecules such as fatty acid binding protein and glucose transporter 4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call