Abstract

Oocytes contain reprogramming machinery that can transform somatic cells into totipotent cells. In this study, we aimed to isolate and characterize nanovesicles from mature porcine oocytes and described them for the first time as "intra-ooplasmic vesicles (IOVs)". Isolated IOVs had an average diameter of 186.3 ± 10.8 nm. Proteomic analysis revealed 467 peptide reads, with the top 20 proteins related to reprogramming, antioxidative defense, cytoskeleton, heat shock proteins, and metabolism. Protein-protein interaction and gene ontology analysis indicated that these proteins were involved in various biological pathways, including protein folding, metabolism, and cellular responses to stress. Supplementing cultured fibroblasts with IOVs resulted in the expression of the pluripotency marker OCT4 and the early trophoblastic marker CDX2 and increased expression of the corresponding mRNAs together with increasing KLF4 and SALL4 expression. IOV treatment of fibroblasts for 14 consecutive days resulted in changes in cell morphology, with increased expression of ZEB2 and YBX3 as markers for epithelial-to-mesenchymal transition (EMT). These results provide a rationale for further characterization of IOVs, investigation of potential reprogramming capabilities for EMT, and the generation of induced pluripotent or oligopotent stem cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.