Abstract

Rhodococcus equi is one of the most important causes of mortality in foals between 1 and 6 months of age. Although rare, infection also occurs in a variety of other mammals including humans, often following immunosuppression of various causes. Secreted proteins are known to mediate important pathogen–host interactions and consequently are favored candidates for vaccine development as they are the most easily accessible microbial antigens to the immune system. Here, we describe the results of a proteomic analysis based on SDS-PAGE, immunoblot and mass spectrometry, which was carried out aiming the identification of secreted proteins that are differently expressed at 30 °C versus 37 °C and at mid-exponential versus early-stationary growth phase and antigenic proteins from R. equi ATCC 33701. A total of 48 proteins was identified regardless of growth conditions. The cholesterol oxidase ChoE appears to be the major secretory protein. Moreover, four proteins revealed high homologies with the mycolyl transferases of the Ag85 complex from Mycobacterium tuberculosis. The sequence analysis predicted that 24 proteins are transported by a signal peptide-dependent pathway. Moreover, five antigenic proteins of R. equi were identified by immunoblot, including a novel strongly immunoreactive protein of unknown function. In conclusion, the elucidation of the secretome of R. equi identified several proteins with different biological functions and a new candidate for developing vaccines against R. equi infection in horse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.