Abstract

Carotenoids and triacylglycerols from yeasts are important bioproducts that can be utilized for the nutraceutical and biodiesel industries respectively. Rhodotorula diobovata is capable of producing these bioproducts under varied culture conditions. These productions have been linked to the early stationary growth phase and their levels only start to decline at the late stationary phase when carbon becomes limiting. While nitrogen-limitation influences the onset of lipogenesis, continuous synthesis and accumulation of neutral lipids (triacylglycerides) may be dependent on other culture conditions such as aeration. Proteomic analyses were conducted to enhance our understanding of changes in gene product expression under culture conditions with nitrogen-limitation, coupled with insufficient aeration, and revealed a correlation between the upregulation of proteins in the lipolysis pathways and the reduced synthesis of fatty acids at the early stationary phase. Upregulation of glycolytic pathway enzymes suggested that glucose was quickly converted into pyruvate and then acetyl-CoA. However, acetyl-CoA flux favoured carotenoids biosynthesis over fatty acid synthesis, as cells transitioned into the stationary phase. This work provides insights into how culture conditions influence gene product expression levels, pathway utilization, and end-product synthesis patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call