Abstract

AimsExtracellular vesicles (EVs) are vital for information exchange between donor and recipient cells. When cells are stressed (e.g., by oxygen glucose deprivation, OGD), the complex information carried by the EVs is altered by the donor cells. Here, we aimed to analyze the proteomic differences between EVs derived from OGD-damaged cells and EVs derived from undamaged cells to explore the potential mechanisms by which EVs aggravate ischemic stroke (IS). Main methodsEVs released by rat adrenal gland PC12 cells subjected to 0, 3, 6, or 12 h of OGD were isolated. The proteins from the EVs secreted by each of the OGD groups were profiled using liquid chromatography-tandem mass spectroscopy (LC-MS/MS). We predicted the functions, pathways, and interactions of the differentially expressed proteins using Gene Ontology (GO), KEGG pathways, and STRING. We used parallel reaction monitoring (PRM) to validate our results. Key findingsWe identified several differentially expressed proteins in the OGD groups as compared to the controls: 170 proteins in the 3 h OGD EVs, 44 proteins in the 6 h OGD EVs, and 77 proteins in the 12 h OGD EVs (fold-change ≥1.5; p ≤ 0.05). These proteins were associated with oxidative stress, carbohydrate metabolism, protein synthesis and degradation, and thrombosis. SignificanceWe identified changes in protein expression in the EVs secreted by OGD-damaged cells, highlighting potential mechanisms by which EVs aggravate IS. Our results also suggested potential protein targets, which may be useful for the prevention and treatment of IS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.