Abstract

Abstract Despite large differences in behaviors and living conditions, vertebrate organisms share the great majority of proteins often with subtle differences in amino acid sequence. By comparing a set of substantially homologous proteins between model vertebrate organisms at a sub-proteome level, we discover a pattern of amino acid conservation and a shift in amino acid use, noticeably with an apparent distinction between homeotherms (warm-blooded species) and poikilotherms (cold-blooded species). Importantly, we establish a connection between the thermoadaptation of protein sequences manifest in the evolved proteins and two of their physical features: a change in their proteins dynamics and in their solvation. For poikilotherms such as frog and fish, the lower body temperature is expected to increase the association of proteins due to a decrease in protein dynamics and correspondingly lower entropy penalty on binding. In order to prevent overly-sticky protein association at low temperatures, we find that poikilotherms enhance the solvation of their proteins by favoring polar amino acids on their protein’s surface. This study unveils a general mechanism behind amino acid choices that constitute part of the thermoadaptation of vertebrate organisms at the molecular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call