Abstract

Curcumin exhibits both immunomodulatory properties and anticarcinogenic effects which have been investigated in different experimental tumor models and cancer types. Its interactions with multiple signaling pathways have been documented through proteomic studies on malignant cells in culture; however, in vivo approaches are scarce. In this study, we used a rat model of highly invasive peritoneal mesothelioma to analyze the residual tumor proteomes of curcumin-treated rats in comparison with untreated tumor-bearing rats (G1) and provide insights into the modifications in the tumor microenvironment/malignant cell crosstalk. The cross-comparing analyses of the histological sections of residual tumors from two groups of rats given curcumin twice on days 21 and 26 after the tumor challenge (G2) or four times on days 7, 9, 11 and 14 (G3), in comparison with G1, identified a common increase in caveolin-1 which linked with significant abundance changes affecting 115 other proteins. The comparison of G3 vs. G2 revealed additional features for 65 main proteins, including an increase in histidine-rich glycoprotein and highly significant abundance changes for 22 other proteins regulating the tumor microenvironment, linked with the presence of numerous activated T cells. These results highlight new features in the multiple actions of curcumin on tumor microenvironment components and cancer cell invasiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.