Abstract

Allergic contact dermatitis (ACD) is a common inflammatory dermatosis characterized by persistent itch and pain after topical contact with reactive chemicals. Although it has been long recognized as a type-IV hypersensitivity, its complexity of pathophysiology mechanism makes it still a clinical aporia in treatment. In this study, we aimed to identify crucial proteins involved in the nociceptive sensation of ACD. Based on a chemical-induced ACD murine model, we collected trigeminal ganglions of ACD and control mice for quantitative tandem mass tag (TMT)-labeling proteomic analysis. Immunohistochemistry was further practiced to validate the bioinformatic analysis. A total of 7685 proteins were identified and analyzed. Sixty-four proteins were significantly upregulated, and 75 proteins were downregulated in ACD mice. GO analysis demonstrated that the changed proteins were significantly enriched in terms of immune and peptidase activity in ACD mice. Proteins involved in the complement and coagulation cascades were notably changed in the KEGG enrichment analysis. The upregulation of complement component 3 (C3) in trigeminal satellite cells of ACD mice was further confirmed by immunohistochemistry. ACD upregulated C3 in trigeminal satellite cells. The complement system in sensory ganglion might play an essential role in forming pruritic and nociceptive sensations in ACD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.