Abstract

BackgroundBacillus cereus is a bacterial species which grows efficiently on a wide range of carbon sources and accumulates biopolymer poly-hydroxybutyrate (PHB) up to 80% cell dry weight. PHB is an aliphatic polymer produced and stored intracellularly as a reservoir of carbon and energy, its mobilization is a key biological process for sporulation in Bacillus spp. Previously, B. cereus tsu1 was isolated and cultured on rapeseed cake substrate (RCS), with maximum of PHB accumulation reached within 12 h, and depleted after 48 h. Fore-spore and spore structure were observed after 24 h culture.ResultsQuantitative proteomic analysis of B. cereus tsu1 identified 2952 quantifiable proteins, and 244 significantly changed proteins (SCPs) in the 24 h:12 h pair of samples, and 325 SCPs in the 48 h:12 h pair of samples. Based on gene ontology classification analysis, biological processes enriched only in the 24 h:12 h SCPs include purine nucleotide metabolism, protein folding, metal ion homeostasis, response to stress, carboxylic acid catabolism, and cellular amino acid catabolism. The 48 h:12 h SCPs were enriched into processes including carbohydrate metabolism, protein metabolism, oxidative phosphorylation, and formation of translation ternary structure. A key enzyme for PHB metabolism, poly(R)-hydroxyalkanoic acid synthase (PhaC, KGT44865) accumulated significantly higher in 12 h-culture. Sporulation related proteins SigF and SpoEII were significantly higher in 24 h-samples. Enzymes for nitrate respiration and fermentation accumulated to the highest abundance level in 48 h-culture.ConclusionsChanges in proteome of B. cereus tsu1 during PHB intracellular mobilization were characterized in this study. The key enzyme PhaC for PHB synthesis increased significantly after 12 h-culture which supports the highest PHB accumulation at this time point. The protein abundance level of SpoIIE and SigF also increased, correlating with sporulation in 24 h-culture. Enzymes for nitrate respiration and fermentation were significantly induced in 48 h-culture which indicates the depletion of oxygen at this stage and carbon flow towards fermentative growth. Results from this study provide insights into proteome profile changes during PHB accumulation and reuse, which can be applied to achieve a higher PHB yield and to improve bacterial growth performance and stress resistance.

Highlights

  • Bacillus cereus is a bacterial species which grows efficiently on a wide range of carbon sources and accumulates biopolymer poly-hydroxybutyrate (PHB) up to 80% cell dry weight

  • Growth phases and PHB intracellular mobilization of B. cereus tsu1 Bacillus cereus tsu1 was cultured using rapeseed cake substrate (RCS) medium and cells were stained with Sudan black to observe PHB accumulation status (Fig. 1)

  • The reasons for selecting these three time points were 1) bacterial cells in 12 hculture were loaded with PHB when examined using the Sudan black staining method; 2) in 24 h-culture, most cells were still filled with PHB, but some cells were sporulating with fore-spore, and spore structure visible under the microscope; 3) significant degradation of PHB was observed in 48 h-culture, and even though some mature endospores were released, most cells were still in vegetative state

Read more

Summary

Introduction

Bacillus cereus is a bacterial species which grows efficiently on a wide range of carbon sources and accumulates biopolymer poly-hydroxybutyrate (PHB) up to 80% cell dry weight. PHB is an aliphatic polymer produced and stored intracellularly as a reservoir of carbon and energy, its mobilization is a key biological process for sporulation in Bacillus spp. Bacillus cereus is a gram-positive, facultative anaerobic bacterium that is widely found in soil and other environments. This species of bacteria can grow efficiently by assimilating a wide range of carbon sources including glucose, sucrose, glycerol, oil fat among others [1]. The bacterial strain was reported to produce poly-hydroxyalkanoates (PHAs) as high as 80% of cell dry weight [2]. The high production cost of PHAs bioplastics remains a major limitation for its commercialization and industrialization [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call