Abstract

This study aimed to identify the aluminum (Al)-induced proteomes in tomato (Solanum lycopersicum, "Micro-Tom") after long-term exposure to the stress factor. Plants were treated in Magnavaca's solution (pH 4.5) supplemented with 7.5 μM Al(3+) ion activity over a 4 month period beginning at the emergence of flower buds and ending when the lower mature leaves started to turn yellow. Proteomes were identified using a 8-plex isobaric tags for relative and absolute quantification (iTRAQ) labeling strategy followed by a two-dimensional (high- and low-pH) chromatographic separation and final generation of tandem mass spectrometry (MS/MS) spectra of tryptic peptides on an LTQ-Orbitrap Elite mass spectrometer. Principal component analysis revealed that the Al-treatment had induced systemic alterations in the proteomes from roots and leaves but not seed tissues. The significantly changed root proteins were shown to have putative functions in Al(3+) ion uptake and transportation, root development, and a multitude of other cellular processes. Changes in the leaf proteome indicate that the light reaction centers of photosynthetic machinery are the primary targets of Al-induced stress. Embryo and seed-coat tissues derived from Al-treated plants were enriched with stress proteins. The biological processes involving these Al-induced proteins concur with the physiological and morphological changes, such as the disturbance of mineral homeostasis (higher contents of Al, P, and Fe and reduced contents of S, Zn, and Mn in Al-treated compared to nontreated plants) in roots and smaller sizes of roots and the whole plants. More importantly, the identified significant proteins might represent a molecular mechanism for plants to develop toward establishing the Al tolerance and adaptation mechanism over a long period of stress treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.