Abstract

Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future.

Highlights

  • Salt stress is one of the most severe environmental challenges and limits crop production throughout the world [1]

  • We further analyzed the effect of salinity on Brassica napus leaves, and the results showed that compared with the control plants, the fresh weight (FW) and water content (WC) of the third leaves was reduced by 43% and 3%, respectively, after salt treatment for 3 d

  • Most of the up-accumulated proteins during NaCl treatment were associated with protein metabolism, damage repair and defense response, which might account for the alleviation of the adverse effect of salt stress on Chl biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves

Read more

Summary

Introduction

Salt stress is one of the most severe environmental challenges and limits crop production throughout the world [1]. Research to determine the mechanism of salinity adaptation and improving salt tolerance of plants has attracted increasing attention. NaCl is the main component of salinity [2] and exposure to high concentrations of NaCl can trigger various adverse effects, including water deficit, ionic toxicity, nutritional disorders, plant growth stunt, photosynthesis and protein synthesis depression, excess reactive oxygen species (ROS) generation and oxidative stress [3,4,5,6]. To cope with the deleterious effects of salt stress, plants have evolved. Dynamics Responses to Salt Stress in Brassica napus

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call