Abstract

We performed comparative proteomic analyses in order to understand the physiological responses of ginseng (Panax ginseng C. A. Meyer) to high light (HL). As a first step, we analyzed the proteins expressed in ginseng leaves. Proteins extracted from leaves were separated by two-dimensional polyacrylamide gel electrophoresis. Protein spots were identified by tandem mass spectra analysis using electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS). We used a ginseng expressed sequence tag (EST) database as well as a nonredundant protein database from NCBI to identify proteins. Eighty-one proteins were identified using the nr protein database, 51 of which were also verified from the ginseng EST database. An additional 66 proteins were identified only from the ginseng EST database. Proteins that function in energy metabolism, protein stabilization, and protection against oxidative stress were abundant. To understand the light responses of ginseng leaves, we studied time dependent changes in expressed proteins produced by 0-4 h of HL exposure. Six HL-responsive proteins were identified: three proteins were up-regulated (cytosolic small heat-shock protein, cytosolic ascorbate peroxidase, and putative major latex-like protein) and three proteins were down-regulated (Rieske Fe/S protein, putative 3-beta hydroxysteroid dehydrogenase/isomerase-like protein, and oxygen-evolving enhancer-like protein). Our results show that the ginseng EST database combined with ESI Q-TOF MS analysis can be used to identify ginseng proteins and to elucidate the protective mechanism of ginseng against HL induced damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.