Abstract

It is known that proliferation and survival of neural stem/progenitor cells in vitro not only depend on exogenous factors, but also on autocrine factors secreted into the conditioned medium. It is also well known that the identification of bioactive proteins secreted into the conditioned medium poses a substantial challenge. Recently, neural stem/progenitor cells were shown to secrete a survival factor, cystatin C, into the conditioned medium. Here, we demonstrate an approach to identify other low molecular weight proteins in conditioned medium from cultured adult rat hippocampal progenitor cells. A combination of preparative two-dimensional gel electrophoresis (2-DE) and mass spectrometry was utilized in the analysis. We were able to identify a number of proteins, which include Rho-guanine nucleotide dissociation inhibitor 1, phosphatidylethanolamine binding protein (PEBP), also termed Raf-1 kinase interacting protein, polyubiquitin, immunophilin FK506 binding protein 12 (FKBP12) and cystatin C. The presence of PEBP and FKBP12 in conditioned medium was confirmed immunologically. All nestin-positive progenitor cells showed immunoreactivity for antibodies against PEBP and FKBP12. To our knowledge we are the first to use this preparative proteomic approach to search for stem cell factors in conditioned medium. The method could be used to identify novel bioactive proteins secreted by stem/progenitor cells in vitro. Identification of bioactive proteins in vitro is of potential importance for the understanding of the regulatory mechanisms of the cells in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.