Abstract
The cerebellum contains more neurons than all other brain regions combined and these cells exhibit complex circuit development and dendritic elaboration during the postnatal period. Neural development, cellular morphogenesis, and synaptic plasticity are dependent on the dynamic regulation of the actin cytoskeleton by actin-binding proteins. The identification of the actin filament interactome, including proteins developmentally regulated in the postnatal cerebellum, could help define important regulators of actin cytoskeletal dynamics in developing cerebellar neurons. Affinity purification of cerebellar proteins on F-actin columns, combined with mass spectrometry, in total, 434 actin filament-associated proteins in postnatal rat cerebellum (P7) were identified. Furthermore, semi-quantitative RT-PCR was performed to screening postnatal developmentally regulated genes involved in actin dynamics and membrane trafficking in rat cerebellum (P0–P56). As the result, nine genes encoding members of the cerebellar F-actin interactome were developmentally regulated in the transcriptional level and at least five of them exhibited a similar pattern at the protein expression level by Western blot analysis. Further fluorescent immunohistochemical observations demonstrated that the actin-associated proteins Lethal(2) giant larvae protein homolog 1 (LLGL1) and metastasis suppressor 1 (MTSS1) were specifically upregulated in granule neurons and Purkinje cells during morphogenesis of axons and dendrites. This work defines a provisional actin filament interactome in rat postnatal cerebellum and identifies several candidate proteins that may be involved in the postnatal development of the cerebellum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.