Abstract

Recently, we reported the proteome analysis of a human hepatocellular carcinoma cell line, HCC-M (Electrophoresis 2000, 21, 1787-1813), using two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). From a total of 408 unique spots excised from the 2-DE gel, 301 spots yielded good MALDI spectra. Out of these, 272 spots had matches returned from the database search leading to the identification of these proteins. Here, we report the results on the identification of the remaining 29 spots using nanoelectrospray ionization-tandem mass spectrometry (nESI-MS/MS). First, "peptide tag sequencing" was performed to obtain partial amino acid sequences of the peptides to search the SWISS-PROTand NCBI nonredundant protein databases. Spots that were still not able to find any matches from the databases were subjected to de novo peptide sequencing. The tryptic peptide sequences were used to search for homologues in the protein and nucleotide databases with the NCBI Basic Local Alignment Search Tool (BLAST), which was essential for the characterization of novel or post-translationally modified proteins. Using this approach, all the 29 spots were unambiguously identified. Among them, phosphotyrosyl phosphatase activator (PTPA), RNA-binding protein regulatory subunit, replication protein A 32 kDa subunit (RP-A) and N-acetylneuraminic acid phosphate synthase were reported to be cancer-related proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.