Abstract

Severe acute respiratory syndrome coronavirus has a great role in causing respiratory illness in humans and has the most important relationship of its spike proteins with host ACE-2 receptors. After entry into the human body, the viral S protein receptor-binding domain binds to human ACE-2 receptor. Two modes explained in this paper of an ACE-2 shedding. The shedding induces the process of viral entry to host cells by binding SARS-CoV-2 proteins. The residues of arginine and lysine in the ACE-2 receptor from 652 to 659 amino acid cleavage by ADAM17 but in TMPRSS2 the residues can be seen on amino acid from 697 to 716. Corona virus genome shows some structural proteins that are responsible for the cellular entry and facilitate the attachment of a virus to the host cell. Virus recognizes the attachment site and binds with it and enter into the cell. Spike protein is split from the cleavage site along its two subunits S1 and S2 then during this process. S2 subunit release RBD (Receptor- Binding Domain) of S1 mediated to the ACE-2. The RBD of S1 consists of 200 amino acid domains. The unknown protein B6ATI which is a neutral amino acid transporter located in ileum is the basic cause for formation of ACE-2 homodimer. In this way S1 domain provides site for another S2 domain. This leads to concealing of the ACE-2 ectodomain cleavage-sites, shedding. It prevents endocytosis of the receptor blocking a major pathway in the viral entry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call