Abstract
The important human gram positive bacterial pathogen Streptococcus pyogenes employs various virulence factors to promote inflammation and to facilitate invasive disease progression. In this study we explored the relation of the secreted streptococcal cysteine proteases IdeS and SpeB, and neutrophil (PMN) proteases. We found that SpeB is resistant to proteolytic attack in an inflammatory environment, emphasizing the importance of SpeB for streptococcal pathogenicity, while PMN enzymes and SpeB itself process the IgG degrading endopeptidase IdeS. Processing occurs as NH2-terminal cleavage of IdeS resulting in reduced immunorecognition of the protease by specific antibodies. While the endopeptidase retains IgG cleaving activity, its ability to suppress the generation of reactive oxygen species is abolished. We suggest that the cleavage of NH2-terminal peptides by SpeB and/or neutrophil proteases is a mechanism evolved to prevent early inactivation of this important streptococcal virulence factor, albeit at the cost of impaired functionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.