Abstract

Biochemical interactions underlying the generation of the ventralising signal during Drosophila embryogenesis were investigated by the expression of recombinant Easter and Spätzle proteins. An active form of Easter protease cleaves the Spätzle protein, generating a carboxyterminal polypeptide fragment which, when microinjected into the perivitelline space of a spätzle deficient embryo, directs production of ventrolateral pattern elements. This Spätzle carboxyterminal fragment is a disulfide-linked dimer and modelling suggests that the core disulfide bonds and dimer arrangement of this fragment are highly similar to vertebrate nerve growth factor. Thus Spätzle is a member of a new family of neurotrophin-like signalling molecules in invertebrate development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.