Abstract

The longest open reading frame of turnip yellow mosaic virus genomic RNA (ORF-206) encodes a 206-kDa nonstructural protein. The most prominent in vitro translation products of ORF-206 are the full-length p206 and a shorter N-coterminal 150-kDa protein. We have confirmed these assignments by immunoprecipitation of in vitro translation products with antisera raised to N-terminal and C-terminal regions encoded by ORF-206. The mechanism by which the 150-kDa protein arises from ORF-206 was investigated by in vitro translation of deletion and substitution derivatives transcribed from pTYMC, a cDNA clone of TYMV RNA. The following observations demonstrate that the 150-kDa protein and a C-terminal 70-kDa protein arise from ORF-206 by autoproteolysis: (1) Two regions encoded by ORF-206 were necessary for the formation of the 150-kDa protein: a domain between amino acids 555 and 1051, postulated to encode a protease, and the region between amino acids 1253 and 1261, thought to constitute the protease recognition and/or cleavage site. (2) Mutants with substitutions between amino acids 1253 and 1261 that produce low levels of the 150-kDa protein in in vitro translations also have high levels of p206 and low levels of the 70-kDa protein. (3) The rate of formation of the 150-kDa protein is dilution insensitive, suggesting that proteolysis occurs mainly in cis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.