Abstract
Proteolytic processing of Bacillus thuringiensis (Bt) crystal toxins by insect midgut proteases plays an essential role in their insecticidal toxicities against target insects. In the present study, proteolysis of Bt crystal toxin Cry2Ab by Plutella xylostella L. midgut proteases (PxMJ) was evaluated. Both trypsin and chymotrypsin were identified involving the proteolytic activation of Cry2Ab and cleaving Cry2Ab at Arg(139) and Leu(144), respectively. Three Cry2Ab mutants (R139A, L144A, and R139A-L144A) were constructed by replacing residues Arg(139), Leu(144), and Arg(139)-Leu(144) with alanine. Proteolysis assays revealed that mutants R139A and L144A but not R139A-L144A could be cleaved into 50 kDa activated toxins by PxMJ. Bioassays showed that mutants R139A and L144A were highly toxic against P. xylostella larvae, while mutant R139A-L144A was almost non-insecticidal. Those results demonstrated that proteolysis by PxMJ was associated with the toxicity of Cry2Ab against P. xylostella. It also revealed that either trypsin or chymotrypsin was enough to activate Cry2Ab protoxin. This characteristic was regarded as a belt-and-braces approach and might contribute to the control of resistance development in target insects. Our studies characterized the proteolytic processing of Cry2Ab and provided new insight into the activation of this Bt toxin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.