Abstract

A comparison of the basal degradation of type I Ins P3Rs [L- myo -inositol 1,4,5-trisphosphate receptor], measured by pulse-chase analysis or by analysis of immunoreactive Ins P3Rs after cycloheximide addition, indicated that the small pool of newly synthesized radioactive Ins P3Rs degraded relatively rapidly compared with the large pool of mature Ins P3Rs. An antibody (Ab) against a peptide sequence within the IL-3 (third intraluminal loop) of the receptor (IL-3 Ab) was used to identify protected proteolytic fragments that may accumulate in cells. The IL-3 Ab recognized a 56 kDa fragment in both WB rat liver cells and A7R5 smooth-muscle cells. Gel filtration experiments indicated that the 56 kDa fragment was monomeric and, based on reactivity to other Abs, was missing the cytosol-exposed N- and C-terminal segments of the receptor. The addition of the lysosomal protease inhibitor chloroquine resulted in the rapid disappearance of the 56 kDa band. This effect was mimicked by the cysteine protease inhibitors leupeptin, N -acetyl-L-leucyl-L-leucyl-L-methioninal and N -acetyl-leucyl-leucyl-norleucinal. Lactacystin and NH4Cl were less effective. A second fragment of 16 kDa containing the C-terminus accumulated only when the cells were treated with NH4Cl, and not with any of the other inhibitors tested. No N-terminal-reactive fragments were observed. We propose that mature Ins P3R tetramers dissociate into monomers and that the 56 kDa fragment is a cleavage intermediate of the monomer representing the six transmembrane domains. Angiotensin-II-stimulated down-regulation of Ins P3Rs in WB cells has been shown to involve the ubiquitin/proteasome pathway. Angiotensin-II treatment of WB cells neither resulted in the accumulation of any new fragments nor increased the levels of the 56 or 16 kDa fragments. We conclude that basal and agonist-stimulated degradations of Ins P3Rs occur by different pathways. The agonist-mediated pathway involves the concerted removal and proteolysis of the entire receptor molecule from the endoplasmic reticulum membrane without the appearance of intermediate intraluminal fragments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call