Abstract
A comparative in vitro survey of physiologically relevant human and microbial proteinases defined a number of enzymes that induced specific hinge domain cleavage in human IgG1. Several of these proteinases have been associated with tumor growth, inflammation, and infection. A majority of the identified proteinases converted IgG to F(ab′) 2, and a consistent feature of their action was a transient accumulation of a single-cleaved intermediate (scIgG). The scIgG resulted from the relatively rapid cleavage of the first hinge domain heavy chain, followed by a slower cleavage of the second chain to separate the Fc domain from F(ab′) 2. Major sites of enzymatic cleavage were identified or confirmed from the mass of the F(ab′) 2 or Fab fragments and/or the amino-terminal amino acid sequence of the Fc for each enzyme including human matrix metalloproteinases (MMPs) 3 and 12, human cathepsin G, human neutrophil elastase (Fab), staphylococcal glutamyl endopeptidase I and streptococcal immunoglobulin-degrading enzyme (IdeS). The cleavage sites in IgG1 by MMP-3, cathepsin G and IdeS were used to guide the synthesis of peptide analogs containing the corresponding carboxy-termini to be used as immunogens in rabbits. Rabbit antibodies were successfully generated that showed selective binding to different human F(ab′) 2s and other hinge-cleavage fragments, but not to intact IgG. In Western blotting studies of synovial fluids from individuals with rheumatoid arthritis, the rabbit antibodies yielded patterns consistent with the presence of endogenous IgG fragments including F(ab′) 2 and the single-cleaved IgG intermediate. The detection in synovial fluid of IgG fragments similar to those observed in the in vitro biochemical studies suggests that proteolysis of IgG may contribute to localized immune dysfunction in inflammatory environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.